

Car on motorway	30m/s		Walking	1.5m/s
Train	60m/s	H	Running	3m/s
Sound in air	330m/s		Cycling	6m/s
· ·				

	Accelerating	Object getting faster	
	Decelerating	Object slowing down	
_			
ſ	Speed = distance \div time $v = s \div$		

When the resultant force is greater than 0, the Newton's **Unbalanced** second object accelerates. It could speed up, slow down forces or change direction. Law

F = m X a

Forces and braking

Force = mass X acceleration

Acceleration is inversely proportionalto

mass.

Acceleration is proportional to resultant force.

Stopping distance = thinking distance + braking distance

Thinking distance = speed x reaction time

Speed affects both thinking and braking distances.

Thinking distance	Distance travelled whilst the driver reacts	
Braking distance	Distance travelled whilst the car is stopped by the brakes	
Stopping distance	Total thinking and braking distances	

Scalar

vector

scalar

ecting stances	Drivers reaction times	Drinking alcohol, taking drugs, tired.
Factors affecting stopping distances	Braking distances	Weather conditions, worn brakes or tyres, road surface, size of braking force.
рц	Work done by braking force,	Kinetic energy decreases, temperature of brakes
ng and etic ergy	reduces kinetic	increases due to frictional

energy

AQA FORCES motion

Speed / velocity	Metres per second (m/s)	
Distance	Metres (m)	
Time	Seconds (s)	
Acceleration	Metres per second squared (m/s²)	
Force	Newton (N)	
Mass	Kilogram (Kg)	
Momentum	Kilograms metres per second (Kgm/s)	

Falling objects	In no air resistance,	Air resistance
accelerate due to gravity.	objects accelerate at 9.8m/s ²	slows falling objects down.

Weight of an object Terminal is balanced by velocity drag forces

Object moves at a constant velocity. Resultant force = 0.

HIGHER ONLY

How difficult it is to change Inertial the velocity of an object mass Inertial mass = force ÷ acceleration

If the mass is large, to change velocity a big force is needed.

How difficult it is to change an objects motion

Momentum = mass X velocity

p = m X v

Separates - Changes in momentum

Crumple zones and safety features designed to increase the time an objects takes to stop

F = change momentum / time

Conservation of momentum

When two objects collide, the momentum they have before the collision = the momentum they have after the collision

Explosions - initial momentum equals zero $m_1 \times v_1 + m_2 \times v_2 = 0$ $m_1 \times v_1 = -m_2 \times v_2$

(final velocity) 2 – (initial velocity) 2 = 2 X acceleration X distance $V^2 - u^2 = 2 X a X s$

https://www.bbc.co.uk/bitesize/topics/ztmttv4 bbcbitesize-ks4 science-physics – aga combined science – energy – Forces https://www.senecalearning.com Seneca-combined science physics – AQA foundation or higher – forces and motion

forces.