

Magnetic	Materials attracted by magnets	Uses non-contact force to attract magnetic materials.
North seeking pole	End of magnet pointing north	Compass needle is a bar magnet and points north.
South seeking pole	End of magnet pointing south	Like poles (N – N) repel, unlike poles (N – S) attract.
Magnetic field	Region of force around magnet	Field is strongest at the poles. The strength reduces as distance increases
Permanent	A magnet that produces its own magnetic field	Will repel or attract other magnets and magnetic materials. (steel)
Induced	A temporary magnet	Becomes magnet when placed in a magnetic field. (iron)

Electromagnet

Solenoid

secondary coil of wire also wrapped around the iron core.

Transformer

core. This magnetic field induces a potential difference across the secondary coil, so an (ac) current flows in the secondary coil.

Force	Newton (N)
Magnetic flux density	Tesla (T)
Current	Amperes (A)
Length	Metres (m)
Power	Watts (W)
p.d.	Voltage (V)

- 1		
4	Step-up transformers	Step-down transformers
	Increase voltage, decrease current	Decrease voltage, increase current
	Increases efficiency by reducing amount of heat lost from wires.	Makes safer value of voltage for houses and factories.

Voltage across the coil X number of coils (primary) = Voltage across the coil X number of coils (secondary) $V_n \div V_s = n_n \div n_s$

Power lost = Potential difference X Current

Power supplied to primary coil = power supplied to secondary coil $V_n \times I_n = V_s \times I_s$